Affiliation:
1. Stanford AI Lab, Stanford University,
Abstract
This article presents GraphSLAM, a unifying algorithm for the offline SLAM problem. GraphSLAM is closely related to a recent sequence of research papers on applying optimization techniques to SLAM problems. It transforms the SLAM posterior into a graphical network, representing the log-likelihood of the data. It then reduces this graph using variable elimination techniques, arriving at a lower-dimensional problems that is then solved using conventional optimization techniques. As a result, GraphSLAM can generate maps with 108 or more features. The paper discusses a greedy algorithm for data association, and presents results for SLAM in urban environments with occasional GPS measurements.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
351 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献