Modeling and Optimization of Adaptive Foraging in Swarm Robotic Systems

Author:

Liu Wenguo1,Winfield Alan F. T.2

Affiliation:

1. Bristol Robotics Laboratory, University of the West of England, Bristol, UK,

2. Bristol Robotics Laboratory, University of the West of England, Bristol, UK

Abstract

Understanding the effect of individual parameters on the collective performance of swarm robotic systems in order to design and optimize individual robot behaviors is a significant challenge. In this paper we present a macroscopic probabilistic model of adaptive collective foraging in a swarm of robots, where each robot in the swarm is capable of adjusting its time threshold parameters following the rules described by Liu et al. 2007. The swarm adapts the ratio of foragers to resters (division of labor) in order to maximize the net swarm energy for a given food density. A probabilistic finite state machine (PFSM) and a number of difference equations are developed to describe collective foraging at a macroscopic level. To model adaptation we introduce the new concepts of the sub-PFSM and private/public time thresholds. The model has been validated extensively with simulation trials, and results show that the model achieves very good accuracy in predicting the group performance of the swarm. Finally, a real-coded genetic algorithm is used to explore the parameter spaces and optimize the parameters of the adaptation algorithm. Although this paper presents a macroscopic probabilistic model for adaptive foraging, we argue that the approach could be applied to any adaptive swarm system in which the heterogeneity of the system is coupled with its time parameters.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian learning for the robust verification of autonomous robots;Communications Engineering;2024-01-27

2. Software and Behavior Diversification for Swarm Robotics Systems;Proceedings of the 10th ACM Workshop on Moving Target Defense;2023-11-26

3. Autonomous Swarm Robot Coordination via Mean-Field Control Embedding Multi-Agent Reinforcement Learning;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. Dynamic Response Threshold Model for Self-Organized Task Allocation in a Swarm of Foraging Robots;Applied Sciences;2023-08-10

5. Does “Swarm Intelligence” Support Reductive Physicalism?;Journal of Artificial Intelligence and Consciousness;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3