Affiliation:
1. Institute for Aerospace Studies, University of Toronto, Canada
2. Department of Mechanical Engineering, McGill University, Canada
Abstract
We present a Gaussian variational inference (GVI) technique that can be applied to large-scale nonlinear batch state estimation problems. The main contribution is to show how to fit both the mean and (inverse) covariance of a Gaussian to the posterior efficiently, by exploiting factorization of the joint likelihood of the state and data, as is common in practical problems. This is different than maximum a posteriori (MAP) estimation, which seeks the point estimate for the state that maximizes the posterior (i.e., the mode). The proposed exactly sparse Gaussian variational inference (ESGVI) technique stores the inverse covariance matrix, which is typically very sparse (e.g., block-tridiagonal for classic state estimation). We show that the only blocks of the (dense) covariance matrix that are required during the calculations correspond to the non-zero blocks of the inverse covariance matrix, and further show how to calculate these blocks efficiently in the general GVI problem. ESGVI operates iteratively, and while we can use analytical derivatives at each iteration, Gaussian cubature can be substituted, thereby producing an efficient derivative-free batch formulation. ESGVI simplifies to precisely the Rauch–Tung–Striebel (RTS) smoother in the batch linear estimation case, but goes beyond the ‘extended’ RTS smoother in the nonlinear case because it finds the best-fit Gaussian (mean and covariance), not the MAP point estimate. We demonstrate the technique on controlled simulation problems and a batch nonlinear simultaneous localization and mapping problem with an experimental dataset.
Funder
natural sciences and engineering research council of canada
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献