Inverse KKT: Learning cost functions of manipulation tasks from demonstrations

Author:

Englert Peter1,Vien Ngo Anh2,Toussaint Marc1

Affiliation:

1. Machine Learning & Robotics Lab, Universität Stuttgart, Germany

2. School of EEECS, Queen’s University Belfast, UK

Abstract

Inverse optimal control (IOC) assumes that demonstrations are the solution to an optimal control problem with unknown underlying costs, and extracts parameters of these underlying costs. We propose the framework of inverse Karush–Kuhn–Tucker (KKT), which assumes that the demonstrations fulfill the KKT conditions of an unknown underlying constrained optimization problem, and extracts parameters of this underlying problem. Using this we can exploit the latter to extract the relevant task spaces and parameters of a cost function for skills that involve contacts. For a typical linear parameterization of cost functions this reduces to a quadratic program, ensuring guaranteed and very efficient convergence, but we can deal also with arbitrary non-linear parameterizations of cost functions. We also present a non-parametric variant of inverse KKT that represents the cost function as a functional in reproducing kernel Hilbert spaces. The aim of our approach is to push learning from demonstration to more complex manipulation scenarios that include the interaction with objects and therefore the realization of contacts/constraints within the motion. We demonstrate the approach on manipulation tasks such as sliding a box, closing a drawer and opening a door.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3