Multi-agent path topology in support of socially competent navigation planning

Author:

Mavrogiannis Christoforos I1ORCID,Knepper Ross A2

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA

2. Department of Computer Science, Cornell University, Ithaca, NY, USA

Abstract

We present a navigation planning framework for dynamic, multi-agent environments, where no explicit communication takes place among agents. Inspired by the collaborative nature of human navigation, our approach encodes the concept of coordination into an agent’s decision making through an inference mechanism about collaborative strategies of collision avoidance. Each such strategy represents a distinct avoidance protocol, prescribing a distinct class of navigation behaviors to agents. We model such classes as equivalence classes of multi-agent path topology, using the formalism of topological braids. This formalism may naturally encode any arbitrarily complex, spatiotemporal, multi-agent behavior, in any environment with any number of agents into a compact representation of dual algebraic and geometric nature. This enables us to construct a probabilistic inference mechanism that predicts the collective strategy of avoidance among multiple agents, based on observation of agents’ past behaviors. We incorporate this mechanism into an online planner that enables an agent to understand a multi-agent scene and determine an action that not only contributes progress towards its destination, but also reduction of the uncertainty of other agents regarding the agent’s role in the emerging strategy of avoidance. This is achieved by picking actions that compromise between energy efficiency and compliance with everyone’s inferred avoidance intentions. We evaluate our approach by comparing against a greedy baseline that only maximizes individual efficiency. Simulation results of statistical significance demonstrate that our planner results in a faster uncertainty decrease that facilitates the decision-making process of co-present agents. The algorithm’s performance highlights the importance of topological reasoning in decentralized, multi-agent planning and appears promising for real-world applications in crowded human environments.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Robot Cooperative Socially-Aware Navigation Using Multi-Agent Reinforcement Learning;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Benchmarking Off-the-Shelf Human-Aware Robot Navigation Solutions;Lecture Notes in Networks and Systems;2024

3. Abstracting road traffic via topological braids: Applications to traffic flow analysis and distributed control;The International Journal of Robotics Research;2023-09-08

4. Coordination-free Multi-robot Path Planning for Congestion Reduction Using Topological Reasoning;Journal of Intelligent & Robotic Systems;2023-07

5. On Legible and Predictable Robot Navigation in Multi-Agent Environments;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3