Learning hierarchical sparse features for RGB-(D) object recognition

Author:

Bo Liefeng12,Ren Xiaofeng1,Fox Dieter2

Affiliation:

1. ISTC-Pervasive Computing Intel Labs, Seattle, USA

2. University of Washington, Seattle, USA

Abstract

Recently introduced RGB-D cameras are capable of providing high quality synchronized videos of both color and depth. With its advanced sensing capabilities, this technology represents an opportunity to significantly increase the capabilities of object recognition. It also raises the problem of developing expressive features for the color and depth channels of these sensors. In this paper we introduce hierarchical matching pursuit (HMP) for RGB-D data. As a multi-layer sparse coding network, HMP builds feature hierarchies layer by layer with an increasing receptive field size to capture abstract representations from raw RGB-D data. HMP uses sparse coding to learn codebooks at each layer in an unsupervised way and builds hierarchical feature representations from the learned codebooks in conjunction with orthogonal matching pursuit, spatial pooling and contrast normalization. Extensive experiments on various datasets indicate that the features learned with our approach enable superior object recognition results using linear support vector machines.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Transformer‐Based Network for Full Object Pose Estimation with Depth Refinement;Advanced Intelligent Systems;2024-07-28

2. Exploring 2D projection and 3D spatial information for aircraft 6D pose;Chinese Journal of Aeronautics;2022-12

3. Spatial feature mapping for 6DoF object pose estimation;Pattern Recognition;2022-11

4. FishNet for loop closure detection in VSLAM;Third International Conference on Computer Communication and Network Security (CCNS 2022);2022-10-28

5. Dense Color Constraints based 6D object pose estimation from RGB-D images;2022 41st Chinese Control Conference (CCC);2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3