Contextually guided semantic labeling and search for three-dimensional point clouds

Author:

Anand Abhishek1,Koppula Hema Swetha1,Joachims Thorsten1,Saxena Ashutosh1

Affiliation:

1. Department of Computer Science, Cornell University, USA

Abstract

RGB-D cameras, which give an RGB image together with depths, are becoming increasingly popular for robotic perception. In this paper, we address the task of detecting commonly found objects in the three-dimensional (3D) point cloud of indoor scenes obtained from such cameras. Our method uses a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model’s parsimony becomes important and we address that by using multiple types of edge potentials. We train the model using a maximum-margin learning approach. In our experiments concerning a total of 52 3D scenes of homes and offices (composed from about 550 views), we get a performance of 84.06% and 73.38% in labeling office and home scenes respectively for 17 object classes each. We also present a method for a robot to search for an object using the learned model and the contextual information available from the current labelings of the scene. We applied this algorithm successfully on a mobile robot for the task of finding 12 object classes in 10 different offices and achieved a precision of 97.56% with 78.43% recall.1

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of point cloud segmentation for understanding 3D indoor scenes;Visual Intelligence;2024-06-07

2. Can Robots Mold Soft Plastic Materials by Shaping Depth Images?;IEEE Transactions on Robotics;2023-10

3. 3D point cloud descriptors: state-of-the-art;Artificial Intelligence Review;2023-04-12

4. Vision-based driver ear recognition and spatial reconstruction;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-01-12

5. Computer Vision for Autonomous UAV Flight Safety: An Overview and a Vision-based Safe Landing Pipeline Example;ACM Computing Surveys;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3