Independent control of multiple magnetic microrobots in three dimensions

Author:

Diller Eric1,Giltinan Joshua1,Sitti Metin12

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, USA

2. Robotics Institute, Carnegie Mellon University, USA

Abstract

A major challenge for untethered microscale mobile robotics is the control of many agents in the same workspace for distributed operation. In this work, we present a new method to independently control multiple sub-mm microrobots in three dimensions (3D) using magnetic gradient pulling as the 3D motion generation method. Motion differentiation is accomplished through the use of geometrically or magnetically distinct microrobots which assume different magnetization directions in a rotating or oscillating magnetic field. This allows for different magnetic forces to be exerted on each, enabling independent motion control and path following of multiple microrobots along arbitrary 3D trajectories. Path following in 3D with less than 310 μ m mean error is shown for a set of two microrobots of size 350 μ m and 1500 μ m, and independent motions are shown with three microrobots. It is also shown that control of more microrobots could be possible using improved magnetic coil hardware. Microrobot diversity is analyzed with regards to the effect on independent control. The proposed addressability method could be used for the 3D control of a team of microrobots inside microfluidic channels or in the human body for localized therapy or diagnostics.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3