Individual and collective manipulation of multifunctional bimodal droplets in three dimensions

Author:

Sun Mengmeng1ORCID,Sun Bonan2ORCID,Park Myungjin13ORCID,Yang Shihao2ORCID,Wu Yingdan1ORCID,Zhang Mingchao1ORCID,Kang Wenbin1ORCID,Yoon Jungwon3ORCID,Zhang Li2ORCID,Sitti Metin14ORCID

Affiliation:

1. Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.

2. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.

3. School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, Korea.

4. School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey.

Abstract

Spatiotemporally controllable droplet manipulation is vital across numerous applications, particularly in miniature droplet robots known for their exceptional deformability. Despite notable advancements, current droplet control methods are predominantly limited to two-dimensional (2D) deformation and motion of an individual droplet, with minimal exploration of 3D manipulation and collective droplet behaviors. Here, we introduce a bimodal actuation strategy, merging magnetic and optical fields, for remote and programmable 3D guidance of individual ferrofluidic droplets and droplet collectives. The magnetic field induces a magnetic dipole force, prompting the formation of droplet collectives. Simultaneously, the optical field triggers isothermal changes in interfacial tension through Marangoni flows, enhancing buoyancy and facilitating 3D movements of individual and collective droplets. Moreover, these droplets can function autonomously as soft robots, capable of transporting objects. Alternatively, when combined with a hydrogel shell, they assemble into jellyfish-like robots, driven by sunlight. These findings present an efficient strategy for droplet manipulation, broadening the capabilities of droplet-based robotics.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3