A probabilistic framework for object search with 6-DOF pose estimation

Author:

Ma Jeremy1,Chung Timothy H2,Burdick Joel3

Affiliation:

1. Jet Propulsion Laboratory, Pasadena, CA, USA

2. Naval Postgraduate School, Monterey, CA, USA

3. California Institute of Technology, Pasadena, CA, USA

Abstract

This article presents a systematic approach to the problem of autonomous 3D object search in indoor environments, using a two-wheeled non-holonomic robot equipped with an actuated stereo-camera head and processing done on a single laptop. A probabilistic grid-based map encodes the likelihood of object existence in each cell and is updated after each sensing action. The updating schema incorporates characteristic parameters modeled after the robot’s sensing modalities and allows for sequential updating via Bayesian recursion methods. Two types of sensing modalities are used to update the map: a coarse search method (global search) based on a color histogram approach, and a more refined search method (local search) based on Scale-Invariant Feature Transform (SIFT) feature matching. If the local search correctly locates the desired object, its 6-DOF pose is estimated using stereo applied to each SIFT feature (i.e. 3D SIFT feature), which is then fed as measurements into an Extended Kalman Filter (EKF) for sustained tracking. If the local search fails to locate the desired object in a particular cell, the cell is updated in the probability map and the next peak probability cell is identified and planned to using a separate grid-based costmap populated via obstacle detection from stereo, with planning done using an A* planner. Experimental results obtained from the use of this method on a mobile robot are presented to illustrate and validate the approach, confirming that the search strategy can be carried out with modest computation on a single laptop.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3