Affiliation:
1. Machine Learning & Robotics Lab, University of Stuttgart, Germany
Abstract
We consider the scenario where a robot is demonstrated a manipulation skill once and should then use only a few trials on its own to learn to reproduce, optimize, and generalize that same skill. A manipulation skill is generally a high-dimensional policy. To achieve the desired sample efficiency, we need to exploit the inherent structure in this problem. With our approach, we propose to decompose the problem into analytically known objectives, such as motion smoothness, and black-box objectives, such as trial success or reward, depending on the interaction with the environment. The decomposition allows us to leverage and combine (i) constrained optimization methods to address analytic objectives, (ii) constrained Bayesian optimization to explore black-box objectives, and (iii) inverse optimal control methods to eventually extract a generalizable skill representation. The algorithm is evaluated on a synthetic benchmark experiment and compared with state-of-the-art learning methods. We also demonstrate the performance on real-robot experiments with a PR2.
Subject
Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献