Data-driven planning via imitation learning

Author:

Choudhury Sanjiban1,Bhardwaj Mohak1,Arora Sankalp1,Kapoor Ashish2,Ranade Gireeja2,Scherer Sebastian1,Dey Debadeepta2

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. Microsoft Research, Redmond, WA, USA

Abstract

Robot planning is the process of selecting a sequence of actions that optimize for a task=specific objective. For instance, the objective for a navigation task would be to find collision-free paths, whereas the objective for an exploration task would be to map unknown areas. The optimal solutions to such tasks are heavily influenced by the implicit structure in the environment, i.e. the configuration of objects in the world. State-of-the-art planning approaches, however, do not exploit this structure, thereby expending valuable effort searching the action space instead of focusing on potentially good actions. In this paper, we address the problem of enabling planners to adapt their search strategies by inferring such good actions in an efficient manner using only the information uncovered by the search up until that time. We formulate this as a problem of sequential decision making under uncertainty where at a given iteration a planning policy must map the state of the search to a planning action. Unfortunately, the training process for such partial-information-based policies is slow to converge and susceptible to poor local minima. Our key insight is that if we could fully observe the underlying world map, we would easily be able to disambiguate between good and bad actions. We hence present a novel data-driven imitation learning framework to efficiently train planning policies by imitating a clairvoyant oracle: an oracle that at train time has full knowledge about the world map and can compute optimal decisions. We leverage the fact that for planning problems, such oracles can be efficiently computed and derive performance guarantees for the learnt policy. We examine two important domains that rely on partial-information-based policies: informative path planning and search-based motion planning. We validate the approach on a spectrum of environments for both problem domains, including experiments on a real UAV, and show that the learnt policy consistently outperforms state-of-the-art algorithms. Our framework is able to train policies that achieve up to [Formula: see text] more reward than state-of-the art information-gathering heuristics and a [Formula: see text] speedup as compared with A* on search-based planning problems. Our approach paves the way forward for applying data-driven techniques to other such problem domains under the umbrella of robot planning.

Funder

Office of Naval Research

National Aeronautics and Space Administration

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer-Enhanced Motion Planner: Attention-Guided Sampling for State-Specific Decision Making;IEEE Robotics and Automation Letters;2024-10

2. Learning-based methods for adaptive informative path planning;Robotics and Autonomous Systems;2024-09

3. Manipulating Neural Path Planners via Slight Perturbations;IEEE Robotics and Automation Letters;2024-06

4. DiPPeR: Diffusion-based 2D Path Planner applied on Legged Robots;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Robotic Learning for Informative Path Planning;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3