Trajectory Planning for the Walking Biped “Lucy”

Author:

Vermeulen J.1,Verrelst B.1,Vanderborght B.1,Lefeber D.1,Guillaume P.1

Affiliation:

1. Vrije Universiteit Brussel Department of Mechanical Engineering Pleinlaan 2, 1050 Brussels, Belgium,

Abstract

A real-time joint trajectory generator for planar walking bipeds is proposed. In the near future this trajectory planner will be implemented on the robot “Lucy”, which is actuated by pleated pneumatic artificial muscles. The trajectory planner generates dynamically stable motion patterns by using a set of objective locomotion parameters as its input, and by tuning and exploiting the natural upper body dynamics. The latter can be determined and manipulated by using the angular momentum equation. Basically, trajectories for hip and swing foot motion are generated, which guarantee that the objective locomotion parameters attain certain prescribed values. Additionally, the hip trajectories are slightly modified such that the upper body motion is steered naturally, meaning that it requires practically no actuation. This has the advantage that the upper body actuation hardly influences the position of the Zero Moment Point. The effectiveness of the strategy developed is demonstrated by simulation results. A first simulation is performed under the assumption of perfect tracking by the controllers of the different actuators. This allows one to verify the effectiveness of the trajectory planner and to evaluate the postural stability. A second simulation is performed while taking the control architecture of the real robot into account. In order to have a more realistic simulation the proposed control architecture is evaluated with a full hybrid dynamic simulation model of the biped “Lucy”. This simulator combines the dynamical behaviour of the robot with the thermodynamical effects that take place in the muscle-valves actuation system. The observed hardware limitations of the real robot and expected model errors are taken into account in order to give a realistic qualitative evaluation of the control performance and to test the robustness.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3