Toward efficient navigation in uncertain gyre-like flows

Author:

Heckman Christoffer R.1,Schwartz Ira B.2,Hsieh M. Ani3

Affiliation:

1. Autonomous Robotics and Perception Group, Department of Computer Science, University of Colorado, USA

2. Nonlinear Systems Dynamics Section, Plasma Physics Division, US Naval Research Laboratory, Washington, USA

3. Mechanical Engineering and Mechanics Department, Drexel University, USA

Abstract

We present the development and experimental validation of an autonomous surface/underwater vehicle control strategy that leverages the environmental dynamics and uncertainty to navigate in a stochastic fluidic environment. We assume that the workspace is composed of the union of a collection of disjoint regions, each bounded by Lagrangian coherent structures (LCSs). LCSs are dynamical features in the flow field that behave like invariant manifolds in general time-invariant dynamical systems and delineate the boundaries of attraction basins. We analyze a passive particle’s noise-induced transition between adjacent LCS-bounded regions and show how most probable escape trajectories with respect to the transition probability between adjacent LCS-bounded regions can be determined. Additionally, we show how the likelihood of transition can be controlled through minimal actuation. The result is an energy efficient navigation strategy that leverages the inherent dynamics of the surrounding flow field for mobile sensors operating in a noisy fluidic environment. We experimentally validate the proposed vehicle control strategy and analyze its theoretical properties. Our results show that the single vehicle control parameter exhibits a predictable exponential scaling with respect to the escape times and is effective even in situations where the structure of the flow is not fully known and control effort is costly.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-Efficient Team Orienteering Problem in the Presence of Time-Varying Ocean Currents;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

2. Unsteadily manipulating internal flow barriers;Journal of Fluid Mechanics;2017-04-04

3. Tracking attracting manifolds in flows;Autonomous Robots;2017-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3