Lifelong localization in changing environments

Author:

Tipaldi Gian Diego1,Meyer-Delius Daniel2,Burgard Wolfram1

Affiliation:

1. Department of Computer Science, University of Freiburg, Germany

2. KUKA Laboratories GmbH, Augsburg, Germany

Abstract

Robot localization systems typically assume that the environment is static, ignoring the dynamics inherent in most real-world settings. Corresponding scenarios include households, offices, warehouses and parking lots, where the location of certain objects such as goods, furniture or cars can change over time. These changes typically lead to inconsistent observations with respect to previously learned maps and thus decrease the localization accuracy or even prevent the robot from globally localizing itself. In this paper we present a sound probabilistic approach to lifelong localization in changing environments using a combination of a Rao-Blackwellized particle filter with a hidden Markov model. By exploiting several properties of this model, we obtain a highly efficient map management approach for dynamic environments, which makes it feasible to run our algorithm online. Extensive experiments with a real robot in a dynamically changing environment demonstrate that our algorithm reliably adapts to changes in the environment and also outperforms the popular Monte-Carlo localization approach.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modelling and Simulation,Software

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3