Materials that make robots smart

Author:

Hughes Dana1ORCID,Heckman Christoffer1ORCID,Correll Nikolaus1ORCID

Affiliation:

1. University of Colorado, USA

Abstract

We posit that embodied artificial intelligence is not only a computational, but also a materials problem. While the importance of material and structural properties in the control loop are well understood, materials can take an active role during control by tight integration of sensors, actuators, computation, and communication. We envision such materials to abstract functionality, therefore making the construction of intelligent robots more straightforward and robust. For example, robots could be made of bones that measure load, muscles that move, skin that provides the robot with information about the kind and location of tactile sensations ranging from pressure to texture and damage, eyes that extract high-level information, and brain material that provides computation in a scalable manner. Such materials will not resemble any existing engineered materials, but rather the heterogeneous components out of which their natural counterparts are made. We describe the state-of-the-art in so-called “robotic materials,” their opportunities for revolutionizing applications ranging from manipulation to autonomous driving by describing two recent robotic materials, a smart skin and a smart tire in more depth, and conclude with open challenges that the robotics community needs to address in collaboration with allies, such as wireless sensor network researchers and polymer scientists.

Funder

Defense Advanced Research Projects Agency

Army Research Office

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3