Rapid locomotion via reinforcement learning

Author:

Margolis Gabriel B.1ORCID,Yang Ge12,Paigwar Kartik1,Chen Tao1,Agrawal Pulkit12ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

2. NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA, USA

Abstract

Agile maneuvers such as sprinting and high-speed turning in the wild are challenging for legged robots. We present an end-to-end learned controller that achieves record agility for the MIT Mini Cheetah, sustaining speeds up to 3.9 m/s. This system runs and turns fast on natural terrains like grass, ice, and gravel and responds robustly to disturbances. Our controller is a neural network trained in simulation via reinforcement learning and transferred to the real world. The two key components are (i) an adaptive curriculum on velocity commands and (ii) an online system identification strategy for sim-to-real transfer. Videos of the robot’s behaviors are available at https://agility.csail.mit.edu/ .

Funder

MIT-IBM Watson AI Lab

United States Air Force Research Laboratory

National Science Foundation

Defense Advanced Research Projects Agency

DARPA Machine Common Sense Program

United States Air Force Artificial Intelligence Accelerator

Publisher

SAGE Publications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bionic Jumping of Humanoid Robot via Online Centroid Trajectory Optimization and High Dynamic Motion Controller;Journal of Bionic Engineering;2024-09-04

2. Sim-to-real transfer of active suspension control using deep reinforcement learning;Robotics and Autonomous Systems;2024-09

3. Learning quadrupedal locomotion on tough terrain using an asymmetric terrain feature mining network;Applied Intelligence;2024-08-26

4. Learning to Walk with Adaptive Feet;Robotics;2024-07-24

5. Learning-Based Locomotion Controllers for Quadruped Robots in Indoor Stair Climbing via Deep Reinforcement Learning;2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3