Pattern Recognition Methods for Optimizing Multivariate Tissue Signatures in Diagnostic Ultrasound

Author:

Insana Michael F.1,Wagner Robert F.1,Garra Brian S.2,Momenan Reza3,Shawker Thomas H.2

Affiliation:

1. Office of Science and Technology Center for Devices and Radiological Health, FDA Rockville, MD 20857

2. Dept. of Diagnostic Radiology National Institutes of Health Bethesda, MD 20205

3. Dept. of Electrical Eng. and Computer Science George Washington University Washington, DC 20052

Abstract

Described is a supervised parametric approach to the detection and classification of disease from acoustic data. Statistical pattern recognition techniques are implemented to design the best ultrasonic tissue signature from a set of measurements and for a given task, and to rate its performance in a way that can be compared with other diagnostic tools. In this paper, we considered combinations of four ultrasonic tissue parameters to discriminate, in vivo, between normal liver and chronic active hepatitis. The separation between normal and diseased samples was made by application of the Bayes decision rule for minimum risk which includes the prior probability for the presence of disease and the cost of misclassification. Large differences in classification performance of various tissue parameter combinations were demonstrated using the Hotelling trace criterion (HTC) and receiver operating characteristic (ROC) analysis. The ability of additional measurements to increase or decrease discriminability, even measurements from other diagnostic modalities, can be evaluated directly in this manner.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3