Breast Tissue Classification Using Diagnostic Ultrasound and Pattern Recognition Techniques: II. Experimental Results

Author:

Finette Steven1,Bleier Alan R.2,Swindell William12,Haber Kai1

Affiliation:

1. Department of Radiology Arizona Health Sciences Center University of Arizona Tucson, AZ 85724

2. Optical Sciences Center University of Arizona Tucson, AZ 85721

Abstract

The methods of statistical pattern recognition have been applied to the problem of in vivo ultrasonic characterization of breast disease in humans. Backscattered A-mode signals obtained from a commercial pulse imaging system were used to generate a large set of potentially useful features. Using statistical tests, a small subset of discriminatory features was selected to design a Bayes decision rule for each of two tissue classification schemes: malignant disease vs. benign disease, and malignant disease vs. (benign disease + normal tissue). Classification results obtained by the rotation method included sensitivities of 88 percent and 76 percent for the two schemes, based on data obtained from 32 women. These results are encouraging, though a definitive statement concerning the extrapolation of these numbers to the general population should only be made after obtaining results with a large data base.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3