Automated Identification and Localization of the Inferior Vena Cava Using Ultrasound: An Animal Study

Author:

Chen Jiangang1,Li Jiawei23,Ding Xin4,Chang Cai23,Wang Xiaoting4,Ta Dean5ORCID

Affiliation:

1. Academy for Engineering and Technology, Fudan University, Shanghai, China

2. Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China

3. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China

4. Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China

5. Department of Electronic Engineering, Fudan University, Shanghai, China

Abstract

Ultrasound measurement of the inferior vena cava (IVC) is widely implemented in the clinic. However, the process is time consuming and labor intensive, because the IVC diameter is continuously changing with respiration. In addition, artificial errors and intra-operator variations are always considerable, making the measurement inconsistent. Research efforts were recently devoted to developing semiautomated methods. But most required an initial identification of the IVC manually. As a first step toward fully automated IVC measurement, in this paper, we present an intelligent technique for automated IVC identification and localization. Forty-eight ultrasound data sets were collected from eight pigs, each of which included two frames in B-mode and color mode (C-mode) collected at the inspiration, and two cine loops in B-mode and C-mode. Static and dynamic automation algorithms were applied to the data sets for identifying and localizing the IVC. The results were evaluated by comparing with the manual measurement of experienced clinicians. The automated approaches successfully identified the IVC in 47 cases (success rate: 97.9%). The automated localization of the IVC is close to the manual counterpart, with the difference within one diameter. The automatically measured diameters are close to those measured manually, with most differences below 15%. It is revealed that the proposed method can automatically identify the IVC with high success rate and localize the IVC with high accuracy. But the study with high accuracy was conducted under good control and without considering difficult cases, which deserve future explorations. The method is a first step toward fully automated IVC measurement, which is suitable for point-of-care applications.

Funder

Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3