Automated Pleural Line Detection Based on Radon Transform Using Ultrasound

Author:

Chen Jiangang1,Li Jiawei23,He Chao4,Li Wenfang4,Li Qingli1ORCID

Affiliation:

1. Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China

2. Department of Medical Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China

3. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China

4. Department of Emergency and Critical Care, Changzheng Hospital, Naval Medical University, Shanghai, China

Abstract

It is of vital importance to identify the pleural line when performing lung ultrasound, as the pleural line not only indicates the interface between the chest wall and lung, but offers additional diagnostic information. In the current clinical practice, the pleural line is visually detected and evaluated by clinicians, which requires experiences and skills with challenges for the novice. In this study, we developed a computer-aided technique for automated pleural line detection using ultrasound. The method first utilized the Radon transform to detect line objects in the ultrasound images. The relation of the body mass index and chest wall thickness was then applied to estimate the range of the pleural thickness, based on which the pleural line was detected together with the consideration of the ultrasonic properties of the pleural line. The proposed method was validated by testing 83 ultrasound data sets collected from 21 pneumothorax patients. The pleural lines were successfully identified in 76 data sets by the automated method (successful detection rate 91.6%). In those successful cases, the depths of the pleural lines measured by the automated method agreed with those manually measured as confirmed with the Bland-Altman test. The measurement errors were below 5% in terms of the pleural line depth. As a conclusion, the proposed method could detect the pleural line in an automated manner in the defined data set. In addition, the method may potentially act as an alternative to visual inspection after further tests on more diverse data sets are performed in future studies.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3