An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization

Author:

Liu Yang1,Zhang Yufeng1ORCID,He Bingbing1,Li Zhiyao2,Lang Xun1,Liang Hong1,Chen Jianhua1

Affiliation:

1. Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China

2. The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China

Abstract

The homodyned K distribution (HK) can generally describe the ultrasound backscatter envelope statistics distribution with parameters that have specific physical meaning. However, creating robust and reliable HK parameter estimates remains a crucial concern. The maximum likelihood estimator (MLE) usually yields a small variance and bias in parameter estimation. Thus, two recent studies have attempted to use MLE for parameter estimation of HK distribution. However, some of the statements in these studies are not fully justified and they may hinder the application of parameter estimation of HK distribution based on MLE. In this study, we propose a new parameter estimator for the HK distribution based on the MLE (i.e., MLE1), which overcomes the disadvantages of conventional MLE of HK distribution. The MLE1 was compared with other estimators, such as XU estimator (an estimation method based on the first moment of the intensity and tow log-moments) and ANN estimator (an estimation method based on artificial neural networks). We showed that the estimations of parameters α and k are the best overall (in terms of the relative bias, normalized standard deviation, and relative root mean squared errors) using the proposed MLE1 compared with the others based on the simulated data when the sample size was N = 1000. Moreover, we assessed the usefulness of the proposed MLE1 when the number of scatterers per resolution cell was high (i.e., α up to 80) and when the sample size was small (i.e., N = 100), and we found a satisfactory result. Tests on simulated ultrasound images based on Field II were performed and the results confirmed that the proposed MLE1 is feasible and reliable for the parameter estimation from the ultrasonic envelope signal. Therefore, the proposed MLE1 can accurately estimate the HK parameters with lower uncertainty, which presents a potential practical value for further ultrasonic applications.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3