A Review of Ultrasound Tissue Characterization with Mean Scatterer Spacing

Author:

Zhou Zhuhuang12,Wu Weiwei2,Wu Shuicai1,Jia Kebin2,Tsui Po-Hsiang345

Affiliation:

1. College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China

2. Faculty of Information Technology, Beijing University of Technology, Beijing, China

3. Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan

4. Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan

5. Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan

Abstract

Tissues exhibiting quasi-periodic structures can be modeled as a collection of diffuse scatterers and coherent scatterers. The mean scatterer spacing (MSS) of coherent and quasi-periodic components is directly related to tissue microstructure and has become an important quantitative ultrasound (QUS) parameter in the characterization of quasi-periodic tissues. In this paper, a review of the literature on the development of MSS as a QUS parameter was conducted. First, a unified theoretical background of MSS estimates was provided. Then, the application of MSS estimates was summarized with respect to liver, spleen, breast, bone, muscle, and other tissues. MSS estimation techniques were applied to (a) the diagnosis of hepatitis, liver fibrosis and cirrhosis, and lesions in tissues such as liver, breast, and spleen; (b) the differentiation between benign and malignant breast tumors, and the grading of breast cancer; (c) the detection of cancellous bone; and (d) the monitoring of the efficacy of treatments such as thermal ablation, with various levels of success. Future developments were also discussed in terms of real-time implementation of MSS estimates, local MSS estimation, relationship of MSS to other QUS parameters, combination of MSS with other QUS parameters, in vivo validation of MSS estimates, MSS parametric imaging, and three-dimensional ultrasound tissue characterization.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3