Relationship between super-knock and pre-ignition

Author:

Wang Zhi1,Liu Hui1,Song Tao1,Qi Yunliang1,He Xin1,Shuai Shijin1,Wang JianXin1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China

Abstract

High boost and direct injection are the main tendency of gasoline engine technology. However, pre-ignition/super-knock tends to occur at low-speed high-load conditions, which is the main obstacle for improving power density and fuel economy. This work distinguished the relationship between super-knock and pre-ignition by experimental investigation and numerical simulation. The experiment was conducted on a turbocharged gasoline direct injection engine with compression ratio of 10. The engine was operated at an engine speed of 1750 r/min and the brake mean effective pressure of 2.0 MPa under stoichiometric conditions. Super-knock is the severe engine knock triggered by pre-ignition. Pre-ignition may lead to super-knock, heavy-knock, slight-knock, and non-knock. Significantly advancing spark timing can only simulate pre-ignition, not super-knock. Although knock intensity tends to increase with earlier pre-ignition timing, higher unburned mixture fraction at start of knock, and higher temperature and pressure of the unburned mixture at start of knock, knock intensity cannot be simply correlated to any of the parameters above. A one-dimensional model is set up to numerically simulate the possible combustion process of the end-gas after pre-ignition. Two distinct end-gas combustion modes are identified depending on the pressure and temperature of the mixture: deflagration and detonation. Hot-spot in the mixture at typical near top dead center pressure and temperature condition can only induce deflagration. Hot-spot in the unburned end-gas mixture at temperature and pressure conditions above ’’deto-curve’’ may induce detonation. The mechanism of deto-knock may be described as hot-spot-triggered pre-ignition followed by hotspot- induced deflagration to detonation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3