Assessment of the validity of RANS knock prediction using the resonance theory

Author:

Netzer Corinna1ORCID,Seidel Lars2,Ravet Frédéric3,Mauss Fabian1

Affiliation:

1. Thermodynamics and Thermal Process Engineering, Brandenburg University of Technology, Cottbus, Germany

2. LOGE GmbH, Cottbus, Germany

3. Renault SAS, Lardy, France

Abstract

Following the resonance theory by Bradley and co-workers, engine knock is a consequence of an auto-ignition in the developing detonation regime. Their detonation diagram was developed using direct numerical simulations and was applied in the literature to engine knock assessment using large eddy simulations. In this work, it is analyzed if the detonation diagram can be applied for post-processing and evaluation of predicted auto-ignitions in Reynolds-averaged Navier–Stokes simulations even though the Reynolds-averaged Navier–Stokes approach cannot resolve the fine structures resolved in direct numerical simulations and large eddy simulations that lead to the prediction of a developing detonation. For this purpose, an engine operating point at the knock limit spark advance is simulated using Reynolds-averaged Navier–Stokes and large eddy simulations. The combustion is predicted using the G-equation and the well-stirred reactor model in the unburnt gases based on a detailed gasoline surrogate reaction scheme. All the predicted ignition kernels are evaluated using the resonance theory in a post-processing step. According to the different turbulence models, the predicted pressure rise rates and gradients differ. However, the predicted ignition kernel sizes and imposed gas velocities by the auto-ignition event are similar, which suggests that the auto-ignitions predicted by Reynolds-averaged Navier–Stokes simulations can be given a meaningful interpretation within the detonation diagram.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3