Affiliation:
1. School of Energy and Power Engineering, Shandong University, Jinan, Shandong, China
Abstract
The pre-chamber ignition system scavenged with natural gas can effectively improve the in-cylinder combustion process and extend the lean-burn limit of natural gas engines. The scavenging process affects the flow field and fuel-air mixture concentration distribution in the pre-chamber and affects the combustion process in the pre-chamber as well as the ignition process in the main chamber. This has a significant influence on the performance of natural gas engines. It is supposed that the ratio of natural gas remaining in the mixture inside the pre-chamber at the ignition timing affects the combustion process in the pre-chamber. To verify this suppose, an independent injection system for injecting natural gas into the pre-chamber is designed and experiments are carried out on a single-cylinder natural gas engine. The ratio of natural gas remaining in the mixture inside the pre-chamber at the ignition timing is adjusted by changing the injection start angle of the scavenging process. The combustion process in the pre-chamber and the main chamber are analyzed using the in-cylinder pressures. The results indicate that, with the delay of the injection start angle, the ratio of natural gas remaining in the mixture inside the pre-chamber at the ignition timing increases, the combustion process in the pre-chamber is enhanced, the maximum pressure difference between two chambers increases and appears earlier. The energy of the hot jets and the penetration of the jets increase, which enhances the combustion process in the main chamber.
Funder
Key R & D project of Shandong Province
Key Laboratory of High Efficiency and Low Emission Engine Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology
state key laboratory of engines
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献