Experimental study on combustion instability characteristics in a pre-chamber natural gas engine under lean burn conditions

Author:

Yang Xue1ORCID,Li Guanguan1,Cheng Yong2ORCID,Wang Pengcheng3,Zhao Yanlei1

Affiliation:

1. School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, Shandong, China

2. School of Energy and Power Engineering, Shandong University, Jinan, Shandong, China

3. China National Heavy Duty Truck Group Co., Ltd., Jinan, Shandong, China

Abstract

Pre-chamber jet ignition is a key technology for future high-efficiency natural gas (NG) engines. It can achieve fast and stable combustion through excellent ignition performance. However, there are still some challenges, such as high combustion instability near the lean burn limit and the narrow engine operating range. Therefore, this paper investigates the combustion instability of a pre-chamber NG engine under ultra-diluted conditions by experimental method. At two engine loads, experiments are carried out with different jet ignition intensity schemes to study the effect of jet ignition intensity on the cyclic combustion variations. Then, the combustion instability characteristics of the pre-chamber NG engine are studied by cyclic variation analysis and phase space reconstruction. The results show that with the increase in the jet ignition intensity, the cyclic combustion variations decrease, and the cyclic variation coefficient of the indicated mean effective pressure decreases to below 2%. The lean burn limit of the pre-chamber natural gas engine is extended to an excess air ratio of 2.0. The operation instability of the pre-chamber NG engine is mainly due to cyclic variations in the ignition and combustion process. The nonlinear dynamic analysis shows that the combustion process in the lean burn pre-chamber NG engine behaves with chaotic characteristics under the operating conditions of low jet ignition intensity. As the jet ignition intensity increases, the combustion stability is improved and the cycle-to-cycle variations change from fairly deterministic to more stochastic behavior. The chaotic characteristics of the combustion process become weaker. In conclusion, it is of great importance to generate stable and high ignition intensity jets for reducing combustion instability and improving combustion efficiency in lean burn pre-chamber NG engines.

Funder

shandong provincial postdoctoral science foundation

Doctoral Research Start-up Fund of Shandong University of Technology

natural science foundation of shandong province

national natural science foundation of china

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3