Autoignition prediction capability of the Livengood–Wu correlation applied to fuels of commercial interest

Author:

Hernández Juan J1,Lapuerta Magin1,Sanz-Argent Josep1

Affiliation:

1. E.T.S.I. Industriales (Edificio Politécnico), Universidad de Castilla-La Mancha, Ciudad Real, Spain

Abstract

The integral method proposed by Livengood and Wu has been traditionally used to predict the occurrence of knock on spark-ignition engines. Due to its simplicity and low computational demand, this is a method of great interest for the prediction of another autoignition phenomenon, such as the onset of combustion in compression ignition or homogeneous charged compression ignition engines. However, the simplicity of the method is a consequence of the restrictive assumptions considered during its development, which may limit the applicability of the equation. In this study, the validity of the correlation proposed by Livengood and Wu has been evaluated at different initial operative conditions under pure homogeneous charged compression ignition combustion mode for fuels with practical interest (hydrogen, methane, ethanol and n-heptane). The integral method has shown very good prediction capability for the fuels, which do not present two-stage heat release (hydrogen, methane and ethanol) except in those cases when the onset of combustion is very delayed. When cool flames appear (as in the case of n-heptane), the integral method overpredicts the autoignition times since it does not consider the first stage of heat release. In these cases, the prediction of the integral method may be improved if the whole combustion process is considered as two individual processes. This approach shows fairly good prediction capacity although it is unpractical since the simulation of the second-stage combustion requires the previous calculation of the composition of the mixture and the temperature increase at the end of the first stage. Finally, two alternatives to the original integral method are tested which keep its simplicity and universality while taking into account both first and second heat release, one of them showing better results than the original Livengood and Wu equation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3