Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames

Author:

Owoyele Opeoluwa12ORCID,Kundu Prithwish2,Ameen Muhsin M2,Echekki Tarek1,Som Sibendu2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

2. Energy Systems, Argonne National Laboratory, Lemont, IL, USA

Abstract

The “curse of dimensionality” has limited the applicability and expansion of tabulated combustion models. While the tabulated flamelet model and other multi-dimensional manifold approaches have shown predictive capability, the associated tabulation involves the storage of large lookup tables, requiring large memory as well as multi-dimensional interpolation subroutines, all implemented during runtime. This work investigates the use of deep artificial neural networks to replace lookup tables in order to reduce the memory footprint and increase the computational speed of tabulated flamelets and related approaches. Specifically, different strategic approaches to training the artificial neural network models are explored and a grouped multi-target artificial neural network is introduced, which takes advantage of the ability of artificial neural networks to map an input space to multiple targets by classifying the species based on their correlation to one another. The grouped multi-target artificial neural network approach is validated by applying it to an n-dodecane spray flame using conditions of the Spray A flame from the Engine Combustion Network and comparing global flame characteristics for different ambient conditions using a well-established large-eddy simulation framework. The same framework is then extended to the simulations of methyl decanoate combustion in a compression ignition engine. The validation studies show that the grouped multi-target artificial neural networks are able to accurately capture flame liftoff, autoignition, two-stage heat release and other quantitative trends over a range of conditions. The use of neural networks in conjunction with the grouping mechanism as performed in the grouped multi-target artificial neural network produces a significant reduction in the memory footprint and computational costs for the code and, thus, widens the operating envelope for higher fidelity engine simulations with detailed mechanisms.

Funder

DOE Office of Vehicle Technologies

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3