A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations

Author:

Buhl Stefan1,Hain Dominik1,Hartmann Frank1,Hasse Christian1

Affiliation:

1. Numerical Thermo-Fluid Dynamics, Technische Universität Bergakademie Freiberg, Freiberg, Germany

Abstract

Due to their capability to capture cycle-to-cycle variations and sporadically occurring phenomena such as misfire and knock, scale-resolving simulations are becoming more and more important for internal combustion engine simulations. Compared to the frequently used unsteady Reynolds-averaged Navier-Stokes approaches, scale-resolving simulations require significantly greater computational costs due to their high spatial and temporal resolution as well as the need to compute several cycles to obtain sufficient statistics. It is well established that the appropriate treatment of boundary conditions is crucial in scale-resolving simulations and both temporally and spatially resolved fluctuations must be prescribed. However, different port modeling strategies can be found in the literature, especially with respect to the extent of the computational domain (boundary close to the flange vs. the entire system up to the plenum) and the numerical treatment of the intake/exhaust when the valves are closed (enabled vs. disabled). This study compares three different port modeling strategies, namely a long ports version, a short ports version and a version with short and temporarily disabled ports based on the well-established Darmstadt benchmark engine. The aim is to identify the requirements for scale-resolving simulations in terms of the treatment of the intake and the exhaust ports to obtain accurate statistics (mean and variance) and cycle-to-cycle variations of the in-cylinder flow field.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3