Stationary thermal-gas-dynamics of flows in the cylinder and exhaust system of a piston engine

Author:

Plotnikov L. V.1ORCID,Shurupov V. A.1,Slednev V. A.1,Davydov D. A.1,Krasilnikov D. N.1

Affiliation:

1. Ural Federal University named after the first President of Russia B.N. Yeltsin

Abstract

THE PURPOSE. To evaluate the influence of the exhaust manifold design on gas dynamics and heat transfer of stationary, turbulent gas flows in the cylinder and the exhaust system of a reciprocating internal combustion engine for different boundary conditions based on physical and mathematical modeling.METHODS. The study of gas dynamics and heat transfer of flows was carried out using the CFD approach in specialized Russian-made software. The simulation was performed for a pressure drop from 0.15 to 40 kPa (the flow velocity at the outlet of the system was 10-130 m/s). The k-e turbulence model was used for modeling. The computational grid consisted of 610,000 cells. The design change consisted in the use of profiled channels with cross sections in the form of a circle (diameter 30 mm), a square (side 30 mm) and a triangle (side 52 mm).RESULTS. The article describes the mathematical model, the studied geometry of the exhaust system and the analysis of the obtained data. The velocity field, isolines of equal velocities, and tangential velocity vectors were chosen as the gas-dynamic characteristics of the flow. The gas dynamics in the longitudinal section of the exhaust system and the valve, as well as the visualization of the flow structure in 4 control sections along the length of the exhaust system, were analyzed. The heat transfer coefficient in the exhaust system was used to evaluate the heat transfer characteristics of the flow. Qualitative and quantitative differences in gas dynamics and heat transfer processes are shown.CONCLUSION. It has been established that there are common gas-dynamic effects during the flow of gas in different elements of the exhaust system. The evolution of the flow structure along the length of the exhaust system is shown based on the change in the velocity field, isolines of equal velocities, and tangential velocity vectors. The vortex structures formed in the valve assembly and the corners of the profiled channels are revealed. It has been established that the use of profiled channels in the exhaust system leads to a decrease in the heat transfer coefficient by 5 to 12%.

Publisher

Kazan State Power Engineering University

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3