Affiliation:
1. Engine Research Department, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
2. Sandia National Laboratories, Livermore, CA, USA
Abstract
Simultaneous high-speed natural luminosity and OH* chemiluminescence imaging is used to characterize high-temperature ignition processes in conventional diesel combustion with a pilot-main injection strategy in a single-cylinder, light-duty optical diesel engine. High-speed imaging provides temporally and spatially resolved information in terms of high-temperature ignition processes and flame structure during the combustion. Using these imaging measurements, the high-temperature inflammation and the diffusion flame development processes are analyzed. The chemiluminescence signal shows a hot, reactive mixture, which gradually decreases after the peak release of the pilot combustion and lasts long after the apparent heat release has ended. Therefore, when the reactive pilot mixture exists near the main injection jets, the high-temperature ignition of the main injection is apparently initiated through interactions with the reactive pilot mixture. High-temperature autoignition, another process by which ignition of the main injection occurs, is observed in main injection plumes where the chemiluminescence signal of the reactive pilot mixture becomes very weak or is absent at the start of main injection. As the reaction of the main injection continues, the non-premixed main injection jet structure is developed and the high-temperature reacting region expands throughout the jet.
Funder
Sandia National Laboratories
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献