Visualization of diesel spray and combustion from lateral side of two-dimensional piston cavity in rapid compression and expansion machine, second report: Effects of injection pressure and interval of split injection

Author:

Fan Chengyuan1ORCID,Nishida Keiya1,Ogata Yoichi1

Affiliation:

1. Department of Mechanical Systems Engineering, Graduate School of Advanced Science and Engineering, University of Hiroshima, Hiroshima, Japan

Abstract

The effect of split injection on the fuel spray and combustion processes in a rapid compression and expansion machine was investigated using the visualization process. A two-dimensional piston cavity, designed with the cross section of a reentrant piston, was installed in the combustion chamber to observe the combustion process from the lateral side. Combustion experiments were conducted with injection pressures of 80 MPa, 120 MPa, and 180 MPa and an O2 concentration of 15%. The spray/wall interaction, mixture distribution, and ignition location were investigated using the shadow method. Along with natural flame luminescence, different spray impinging behaviors on combustion process were studied. Furthermore, the combustion characteristics of in-cylinder pressure, apparent heat release rate, and combustion phase were recorded and analyzed simultaneously. The results showed that both high injection pressure and split injection with a longer interval effectively improved the combustion performance. In addition, when the pilot injection was advanced further, the injection interval had a larger influence in reducing soot generation, while the effect of high injection pressure on heat release decreased. Flame separation was found to occur at high injection pressures. It was observed that the flame separation caused by the strong spray momentum was beneficial for reducing soot generation owing to the greater fuel-air interaction area. The spray and combustion processes were investigated in detail, and the significant effects of different injection pressures and injection intervals on combustion performance with the split injection method were highlighted.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3