Affiliation:
1. Purdue University, USA
2. Cummins, Inc., USA
3. Eaton Valvetrain Engineering, USA
Abstract
Approximately 30% of the fuel consumed during typical heavy-duty vehicle operation occurs at elevated speeds with low-to-moderate loads below 6.5 bar brake mean effective pressure. The fuel economy and aftertreatment thermal management of the engine at these conditions can be improved using conventional means as well as cylinder deactivation and intake valve closure modulation. Airflow reductions result in higher exhaust gas temperatures, which are beneficial for aftertreatment thermal management, and reduced pumping work, which improves fuel efficiency. Airflow reductions can be achieved through a reduction of displaced cylinder volume by using cylinder deactivation and through reduction of volumetric efficiency by using intake valve closure modulation. This paper shows that, depending on load, cylinder deactivation and intake valve closure modulation can be used to reduce the fuel consumption between 5% and 25%, increase the rate of warm-up of aftertreatment, maintain higher temperatures, or achieve active diesel particulate filter regeneration without requiring dosing of the diesel oxidation catalyst.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献