Utilizing low airflow strategies, including cylinder deactivation, to improve fuel efficiency and aftertreatment thermal management

Author:

Ramesh Aswin K1,Shaver Gregory M1,Allen Cody M1,Nayyar Soumya2,Gosala Dheeraj B1,Caicedo Parra Dina2,Koeberlein Edward2,McCarthy James3,Nielsen Doug3

Affiliation:

1. Purdue University, USA

2. Cummins, Inc., USA

3. Eaton Valvetrain Engineering, USA

Abstract

Approximately 30% of the fuel consumed during typical heavy-duty vehicle operation occurs at elevated speeds with low-to-moderate loads below 6.5 bar brake mean effective pressure. The fuel economy and aftertreatment thermal management of the engine at these conditions can be improved using conventional means as well as cylinder deactivation and intake valve closure modulation. Airflow reductions result in higher exhaust gas temperatures, which are beneficial for aftertreatment thermal management, and reduced pumping work, which improves fuel efficiency. Airflow reductions can be achieved through a reduction of displaced cylinder volume by using cylinder deactivation and through reduction of volumetric efficiency by using intake valve closure modulation. This paper shows that, depending on load, cylinder deactivation and intake valve closure modulation can be used to reduce the fuel consumption between 5% and 25%, increase the rate of warm-up of aftertreatment, maintain higher temperatures, or achieve active diesel particulate filter regeneration without requiring dosing of the diesel oxidation catalyst.

Funder

Cummins Incorporated

Eaton Corporation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3