Performance improvement of turbocharged SI engine by post-oxidation enhancement in exhaust gas in-homogeneity

Author:

Kumar Madan1ORCID,Moeeni Salaar1ORCID,Kuboyama Tatsuya1,Moriyoshi Yasuo1

Affiliation:

1. Center for Power Source Research for Next-Generation Mobility, Chiba University, Chiba-shi, Japan

Abstract

In this research, the improvement of mixing and pulsation in exhaust manifold with a design and implementation of bypass adapter at exhaust port were deeply investigated. This in-turn can improve the post-oxidation phenomena and hence emissions and engine performance could be enhanced. This research investigation includes 1-D, 3-D simulations and experimental validation on a 4-cylinder turbocharged spark ignition (SI) engine. Firstly, the 1-D and 3-D simulation models were developed and calibrated with the experimental results. Then, the simulations were used for the detailed investigation of mixing and pulsation in exhaust manifold with and without bypass adapter. Thereafter, experimental test for the post-oxidation were conducted with and without consideration of the bypass adapter and results were compared. From the simulation and experimental results, it was proven that by using bypass adapter at the exhaust port, the mixing of exhaust gas species was observed to be significantly improved to some extent. Also, the unbalance between exhaust port and turbocharger upstream gas species were reduced. This also reduced the exhaust gas pulsation. By the improvement of mixing between scavenged O2 and unburned gas species, the post-oxidation reaction was also noted to have improved and consequently the emissions and turbo-speed were found to be better that led to an improved IMEP and thermal efficiency of the engine.

Funder

ministry of economy, trade and industry

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3