Post-oxidation phenomena enhancement with scavenging and secondary air injection in exhaust manifold of a turbocharged GDI engine

Author:

Kumar Madan1ORCID,Moriyoshi Yasuo1,Kuboyama Tatsuya1

Affiliation:

1. Chiba University, Tokyo, Japan

Abstract

A detailed investigation of post-oxidation phenomena by individual and combined effects of scavenging (VVT tuning) and secondary air injection (SAI) was performed. The 1-D simulation including a post-oxidation model developed by Stuttgart University as an international collaboration was used for investigation which includes the main exhaust gas species as CO, H2, and O2-based chemical reactions. Then, experimental validation was conducted on a 4-cylinder turbocharged gasoline direct injection (GDI) engine. From the results, it was noted that the post-oxidation can be actuated at limited operating conditions as higher overlap in moderated speed and load only when scavenging phenomena are considered. However, at lower overlap, it is restricted due to lower O2 scavenging even though the exhaust temperature meets the post-oxidation requirement. Also, the in-homogeneity observed at higher overlap that restricts the significant post-oxidation before the turbocharger upstream. On the other hand, the SAI mechanism can actuate the post-oxidation even at lower overlap if enough O2 concentration, exhaust temperature, and adequate mixing are attained. Hence, the post-oxidation zone can be extended to lower speed-load and overlap if both parameters as scavenging and SAI introduced together. This can possibly lead to better turbo-performance along with lower emissions. However, thermal efficiency needs to be compromised to some extent. It was also found that the effective post-oxidation can be actuated by SAI compared to scavenging-based phenomena if the same concentration of the O2 and temperature are maintained by both mechanisms. This appeared due to the fresh air continuously injected at the exhaust port even at the time of exhaust valve opening duration in SAI mechanism that allows the better mixing of O2 and hot unburned gas species. However, in scavenging-based phenomena, firstly, hot unburned gas passed through the exhaust manifold and then scavenged air follows which restricts mixing between scavenged air and unburned gas species.

Funder

New Energy and Industrial Technology Development Organization

Ministry of Economy, Trade and Industry

universität stuttgart

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3