The outlook for fuels for internal combustion engines

Author:

Kalghatgi Gautam T1

Affiliation:

1. Saudi Aramco, Dhahran, Saudi Arabia

Abstract

The demand for transport energy is increasing, but this increase is heavily skewed toward heavier fuels such as diesel and jet fuel while the demand for gasoline might decrease. As spark-ignition engines develop to become more efficient, abnormal combustion such as knock and preignition will become more likely. High antiknock quality fuels, those with high research octane number and preferably low motor octane number, will enable future spark-ignition engines to reach their full potential. Higher fuel antiknock quality is also likely to mitigate “superknock” resulting from preignition—an abnormal combustion problem in turbocharged spark-ignition engines. In many parts of the world, fuel antiknock specifications are set on the assumption that higher motor octane number contributes to increased knock resistance. Specifications for fuel antiknock quality have a great impact on fuels manufacture and will need to be revised as this mismatch between existing specifications and engine requirements widens. The primary challenge for diesel engines is to reduce emissions of soot and NOx while maintaining high efficiency, and this becomes much easier if such engines are run on fuels of extremely low cetane. Significant development is needed before such engines can be seen on practical vehicles. In the long term, compression ignition engines are likely to use fuels with research octane number in the range of 70–85 (cetane number<∼30) but with no strict requirements on volatility. Such fuels would require less processing in the refinery than today’s fuels. Such an engine/fuels system will be at least as efficient as today’s diesel engine but could be significantly cheaper and also open a path to mitigate the imbalance in demand growth between heavy and light fuels that is expected to arise otherwise. The review concludes with a possible long-term fuel scenario.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3