Reducing pressure oscillation in high-load HCCI combustion via air injection before compression

Author:

Kobayashi Yoshinari1ORCID,Nozaki Shota1,Hayashi Hiroaki1,Ihara Tadayoshi2,Takahashi Shuhei1

Affiliation:

1. Department of Mechanical Engineering, Gifu University, Gifu, Japan

2. Department of Mechanical System Engineering, Daido University, Nagoya, Aichi, Japan

Abstract

Pressure oscillation often occurs in high-load homogeneous charge compression ignition (HCCI) combustion, which is a challenge in the development of HCCI engines for automobiles. This work proposes a novel method of reducing the pressure oscillation in HCCI combustion at high loads. The proposed technique injects air into homogeneous mixtures before compression, thereby giving local fuel concentration gradient. The fuel concentration gradient is expected to suppress a rapid pressure rise, resulting in reduced pressure oscillation. High-load HCCI combustion was simulated via a rapid compression machine with a high compression ratio. Varying the period from air injection to compression, that is, the waiting time, controlled the magnitude of fuel concentration gradient. The pressure oscillation was quantified and evaluated via the knock intensity (KI) and the averaged pressure rise rate. For the short waiting time; in other words, when the local fuel concentration gradient was large, the KI was very lower than that for no air injection. The KI, however, increased with the waiting time to approach that for no air injection. The oscillation modes were also different with and without air injection according to a modal analysis. The in-cylinder temperature distribution was visualized via the infrared radiometry to better understand the effect of air injection. For no air injection, the temperature in the cylinder uniformly increased, and the whole mixtures were ignited instantaneously. With air injection and for the short waiting time, on the other hand, hot spots developed on the rim of the injected air where the specific heat ratio was higher and then gradually spread throughout the chamber. Therefore, retarded auto-ignition and subsequently slow spread would limit a rapid pressure rise, resulting in reduced pressure oscillation in HCCI combustion. In conclusion, the proposed technique is effective for reducing the pressure oscillation in high-load HCCI combustion only for the short waiting time.

Funder

Sasamura Foundation for the Promotion of Engineering

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3