Comparisons of particle size distribution from conventional and advanced compression ignition combustion strategies

Author:

Zhang Yizhou1,Ghandhi Jaal1,Rothamer David1

Affiliation:

1. University of Wisconsin–Madison, Madison, WI, USA

Abstract

Particulate size distribution measurements are of importance in engine research as stricter regulations on particulate matter emissions (both mass and number based) are being implemented. Particulate size distribution measurements can be very sensitive to the laboratory environment or experimental setup, making it difficult to compare results for different combustion strategies acquired in different labs. In this study, a comparison of particulate size distribution measurements over a wide variety of conventional and advanced combustion strategies was conducted using a four-stroke single-cylinder diesel engine test setup to eliminate lab-to-lab variations and enable direct comparison of particulate size distribution results for different combustion strategies. Eight combustion strategies are included in the comparison: conventional diesel combustion, diesel/gasoline reactivity controlled compression ignition, homogeneous charge compression ignition, two types of gasoline compression ignition (early injection and late injection), diesel low temperature combustion, natural gas combustion with diesel pilot injection, and diesel/natural gas reactivity controlled compression ignition. Measurements were performed at four different load-speed points with matched combustion phasing when possible; for several strategies, it was necessary to operate with slightly different combustion phasing. Particle size distributions were measured using a scanning mobility particle sizer. To study the influence of volatile particles, measurements were performed with and without a volatile particle remover (thermodenuder) at low and high dilution ratios. The results show that non-uniformity in the fuel distribution caused by direct injection results in increased accumulation-mode particle concentrations compared to premixed strategies even for low particulate mass advanced combustion strategies. Premixed combustion strategies (homogeneous charge compression ignition) and early injection gasoline compression ignition show higher nuclei-mode particle concentrations. Overall particle number and mass concentrations vary significantly between engine operating conditions and between combustion strategies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3