Review of morphological and chemical characteristics of particulates from compression ignition engines

Author:

Agarwal Avinash Kumar1ORCID,Krishnamoorthi Muniappan1

Affiliation:

1. Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India

Abstract

Particulates from compression ignition (CI) engines have received serious attention in the last two decades. CI engines emit higher particulate matter (PM) and nitrogen oxides (NOx) than spark ignition (SI) engines. Both these species are harmful to human health and the environment. Compared to NOx emissions, PM constitutes many more chemical species in solid and liquid phases. This review paper focuses on soot morphology and chemical characterization of PM emissions from CI engines. Effects of different fuels, lubricating oil, and engine operating conditions on particulate characteristics are analyzed exhaustively. The first part of this paper focuses on the effects of particulates on living organisms, the consequences of exposure to diesel particulates, and the composition of diesel particulates. In recent decades, micro and nano-scale characteristics of PM have been exhaustively investigated to understand its structure, formation, and chemical functionalities. Typically, particulates comprise of elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), the soluble organic fraction (SOF), and trace metals. This paper summarizes most aspects of diesel particulate emissions for the benefit of active researchers in the field and underlines the importance of particulate emission reduction from the CI engines. Diesel combustion generates particles with enormous long-chain aggregates of smaller sizes and immature soot particles. Low-temperature combustion (LTC) modes and oxygenated fuels reduce the soot emissions and generate compact/clustered aggregates. Oxygenated fuels in CI engines produce more nucleation mode particles (NMPs) and high-reactivity soot aggregates. Higher trace metal concentrations were observed in diesel origin particulates than biofuel origin particulates. Biodiesel origin particulates possess higher mutagenicity and carcinogenicity because of nitro-PAHs. Transient engine operations cause higher particulates than steady-state engine operations.

Funder

science and engineering research board

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3