A misfire-integrated Gaussian process (MInt-GP) emulator for energy-assisted compression ignition (EACI) engines with varying cetane number jet fuels

Author:

Narayanan Sai Ranjeet1,Ji Yi2,Sapra Harsh Darshan3,Kweon Chol-Bum Mike4,Kim Kenneth S4,Sun Zongxuan1,Kokjohn Sage3,Mak Simon2,Yang Suo1ORCID

Affiliation:

1. University of Minnesota Twin Cities, Minneapolis, MN, USA

2. Duke University, Durham, NC, USA

3. University of Wisconsin Madison, Madison, WI, USA

4. DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Abstract

For energy-assisted compression ignition (EACI) engine propulsion at high-altitude operating conditions using sustainable jet fuels with varying cetane numbers, it is essential to develop an efficient engine control system for robust and optimal operation. Control systems are typically trained using experimental data, which can be costly and time consuming to generate due to setup time of experiments, unforeseen delays/issues with manufacturing, mishaps/engine failures and the consequent repairs (which can take weeks), and errors in measurements. Computational fluid dynamics (CFD) simulations can overcome such burdens by complementing experiments with simulated data for control system training. Such simulations, however, can be computationally expensive. Existing data-driven machine learning (ML) models have shown promise for emulating the expensive CFD simulator, but encounter key limitations here due to the expensive nature of the training data and the range of differing combustion behaviors (e.g. misfires and partial/delayed ignition) observed at such broad operating conditions. We thus develop a novel physics-integrated emulator, called the Misfire-Integrated GP (MInt-GP), which integrates important auxiliary information on engine misfires within a Gaussian process surrogate model. With limited CFD training data, we show the MInt-GP model can yield reliable predictions of in-cylinder pressure evolution profiles and subsequent heat release profiles and engine CA50 predictions at a broad range of input conditions. We further demonstrate much better prediction capabilities of the MInt-GP at different combustion behaviors compared to existing data-driven ML models such as kriging and neural networks, while also observing up to 80 times computational speed-up over CFD, thus establishing its effectiveness as a tool to assist CFD for fast data generation in control system training.

Funder

Office of Advanced Cyberinfrastructure

National Science Foundation

DEVCOM Army Research Laboratory

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3