Development and experimental validation of a field programmable gate array–based in-cycle direct water injection control strategy for homogeneous charge compression ignition combustion stability

Author:

Gordon David1ORCID,Wouters Christian2ORCID,Wick Maximilian3ORCID,Lehrheuer Bastian2,Andert Jakob3ORCID,Koch Charles1ORCID,Pischinger Stefan2

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

2. Institute for Combustion Engines, RWTH Aachen University, Aachen, Germany

3. Mechatronic Systems for Combustion Engines, RWTH Aachen University, Aachen, Germany

Abstract

Homogeneous charge compression ignition is a part-load combustion method, which can significantly reduce oxides of nitrogen (NO x) emissions compared to current lean-burn spark ignition engines. The challenge with homogeneous charge compression ignition combustion is the high cyclic variation due to the lack of direct ignition control. A fully variable electromagnetic valve train provides the internal exhaust gas recirculation through negative valve overlap which is required to obtain the necessary thermal energy to enable homogeneous charge compression ignition. This also increases the cyclic coupling as residual gas and unburnt fuel is transferred between cycles through exhaust gas recirculation. To improve combustion stability, an experimentally validated feed-forward water injection controller is presented. Utilizing the low latency and rapid calculation rate of a field programmable gate array, a real-time calculation of residual fuel mass is implemented on a prototyping engine controller. Using this field programmable gate array–based calculation, it is possible to calculate the amount of fuel and the required control interaction during an engine cycle. This controller prevents early rapid combustion following a late combustion cycle using direct water injection to cool the cylinder charge and counter the additional thermal energy from any residual fuel that is transferred between cycles. By cooling the trapped cylinder mass, the upcoming combustion phasing can be delayed to the desired setpoint. The controller was tested at several operating points and showed an improvement in the combustion stability as shown by a reduction in the standard deviation of combustion phasing and indicated mean effective pressure.

Funder

Deutsche Forschungsgemeinschaft

Natural Sciences Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3