A systematic approach to calibrate spray and break-up models for the simulation of high-pressure fuel injections

Author:

Sciortino Davide Domenico1ORCID,Bonatesta Fabrizio1ORCID,Hopkins Edward1,Bell Daniel1,Cary Mark1

Affiliation:

1. Faculty of Technology Design and Environment, Oxford Brookes University, Oxford, UK

Abstract

A novel calibration methodology is presented to accurately predict the fundamental characteristics of high-pressure fuel sprays for Gasoline Direct Injection (GDI) applications. The model was developed within the Siemens Simcenter STAR-CD 3D CFD software environment and used the Lagrangian–Eulerian solution scheme. The simulations were carried out based on a quiescent, constant volume, computational vessel to reproduce the real spray testing environment. A combination of statistic and optimisation methods was used for spray model selection and calibration and the process was supported by a wide range of experimental data. A comparative study was conducted between the two most commonly used models for fuel atomisation: Kelvin–Helmholtz/Rayleigh–Taylor (KH–RT) and Reitz–Diwakar (RD) break-up models. The Rosin–Rammler (RR) mono-modal droplet size distribution was tuned to assign initial spray characteristics at the critical nozzle exit location. A half factorial design was used to reveal how the various model calibration factors influence the spray properties, leading to the selection of the dominant ones. Numerical simulations of the injection process were carried out based on space-filling Design of Experiment (DoE) schedules, which used the dominant factors as input variables. Statistical regression and nested optimisation procedures were then applied to define the optimal levels of the model calibration factors. The method aims to give an alternative to the widely used trial-and-error approach and unveils the correlation between calibration factors and spray characteristics. The results show the importance of the initial droplet size distribution and secondary break-up coefficients to accurately calibrate the entire spray process. RD outperformed KH–RT in terms of prediction when comparing numerical spray tip penetration and droplet size characteristics to the experimental counterparts. The calibrated spray model was able to correctly predict the spray properties over a wide range of injection pressure. The work presented in this paper is part of the APC6 DYNAMO project led by Ford Motor Company.

Funder

Innovate UK

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GDI Ammonia Spray Numerical Simulation by Means of OpenFOAM;SAE Technical Paper Series;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3