Experimental investigation on the effect of injector hole number on engine performance and particle number emissions in a light-duty diesel engine

Author:

Mohiuddin Khawar1,Kwon Heesun1,Choi Minhoo1,Park Sungwook2ORCID

Affiliation:

1. Graduate School, Hanyang University, Seoul, Republic of Korea

2. School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea

Abstract

Particle number emissions need to be monitored and controlled in order to comply with the latest emission legislations for gasoline and diesel engines. This research focuses on performance and emission analysis of a light-duty diesel engine with various injector hole numbers. A 500cc single-cylinder diesel engine was used for this purpose, and injectors with hole numbers varying from 7 to 10 were analyzed. Different operating conditions were selected to test the engine at all types of loading conditions. Start of injection and exhaust gas recirculation swings were carried out at all the test cases to see the variation of particle number and other emissions. Increasing injector hole number from 7 to 9, in-cylinder pressure heat release rate and combustion duration increased while ignition delay was shortened. Soot-NOx and ISFC-NOx trade-offs also improved with decreasing hole diameter for these hole numbers. Particle number emissions reduced significantly with increasing hole number. However, the 10-hole injector exhibited a different behavior than the other injectors. For low loading case, cylinder pressure and heat release rate were higher than those of the 9-hole injector but for medium and high loading cases, in-cylinder pressure, heat release rate, and combustion duration of the 10-hole injector were found to be lesser than the 9-hole injector. For medium and high loading cases, particle number emissions from the 10-hole nozzle also increased as compared to the 9-hole injector. Optical engine investigation revealed a higher flame-flame interference in case of the 10-hole injector which resulted in degraded combustion performance and higher particle number emissions.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3