The use of micro-orifice nozzles and swirl in a small HSDI engine operating at a late split-injection LTC regime

Author:

Benajes J1,Molina S1,De Rudder K1,Maroteaux D2,Hamouda H Ben Hadj2

Affiliation:

1. CMT-Motores Térmicos, Universidad Politecnica de Valencia, Valencia, Spain

2. Renault Powertrain Division, Rueil Malmaison, France

Abstract

This paper describes the investigation of low-temperature combustion (LTC) in a small single-cylinder research high-speed direct injection (HSDI) diesel engine. This engine is representative of passenger car turbocharged diesel engines equipped with a particulate trap and an oxidation catalyst. A medium-load operation mode has been evaluated where the diesel fuel is injected in two injection events close to top dead centre, and high levels of exhaust gas recirculation are used (near stoichiometric air-fuel ratios). The combustion is characterized by extremely low emission of nitrogen oxides (of the order of 10–15 parts per million) and low combustion noise. Three injector nozzles have been tested with 6, 12, and 18 orifices. The orifice diameters are in the range 70–120 μM and have been chosen to obtain injector nozzles with the same hydraulic flow. All three nozzles have been tested at a condition without swirl and at a mean swirl number of 1.7. The effects of the nozzle orifice number and swirl have been investigated by means of analysis of fuel spray, combustion, and emissions. It was found that when the number of orifices is increased, the rate of heat release during the first half of combustion is enhanced. However, during the second part of the combustion, interactions between sprays worsen the air-fuel mixing process and reduce the rate of heat release. Swirl was found to amplify the effects of spray interactions. While normally swirl speeds up the combustion in the second half of the combustion, the opposite happens when spray-spray interaction occurs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3