Affiliation:
1. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
Abstract
Advancements in catalytic reforming have demonstrated the ability to generate syngas (a mixture of CO and hydrogen) from a single hydrocarbon stream. This syngas mixture can then be used to replace diesel fuel and enable dual-fuel combustion strategies. The role of port-fuel injected syngas, composed of equal parts hydrogen and carbon monoxide by volume, was investigated experimentally for soot reduction benefits under diesel pilot ignition and reactivity controlled compression ignition strategies. Particle size distribution measurements were made with a scanning mobility particle sizer and condensation particle counter for different levels of syngas substitution. To explain the experimental results, computational fluid dynamics simulations utilizing a detailed stochastic soot model were used to validate and initialize additional simulations that isolate mixing and chemistry effects. Based on these simulations, the influence of adding syngas on soot particle size and quantity is discussed.
Funder
Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献