Conduction-strain model for heat transfer characterization in internal combustion engines

Author:

Dejima Kazuhito1ORCID,Nakabeppu Osamu2

Affiliation:

1. The University of Shiga Prefecture, Hikone, Shiga, Japan

2. Meiji University, Kawasaki, Japan

Abstract

Heat transfer between combustion gases and walls is one of the most important phenomena for internal combustion engines; however, its mechanisms have not yet been elucidated. This study proposed a new model based on one-dimensional heat conduction to characterize and predict engine heat transfer. This model assumes a conduction thickness of a thermal boundary layer determined by heat conduction and strain. Through comparison with numerical simulation, it was found that the heat flux from the conduction-strain model was comparable to that in laminar heat transfer. The heat flux calculated with the conduction-strain model is considered to be the minimum heat flux under each operating condition and engine specification. Therefore, the ratio of the measured heat flux to modeled heat flux indicates the intensity of convection and radiation, particularly turbulent mixing. It was also found that the conduction-strain model reproduced the measured heat flux well with a single coefficient, exhibiting a small error of 10.2%; meanwhile, the errors of Woschni and Annand models were greater than 20%, suggesting that the proposed model has good potential in predicting the instantaneous heat flux more accurately than conventional models.

Funder

Council for Science, Technology and Innovation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3