Thermal modelling of modern engines: A review of empirical correlations to estimate the in-cylinder heat transfer coefficient

Author:

Finol C A1,Robinson K1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

Over the last 40 years, several empirical correlations have been developed to estimate heat fluxes from the combustion chambers of internal combustion engines. Some of these expressions are based on correlations to compute the Nusselt number for forced convection in turbulent flow inside circular tubes. The fundamental suitability of this kind of empirical model in representing the highly complex processes of in-cylinder heat transfer is questionable, but in practice the models have steadily improved owing to contributions from numerous investigators. Other correlations have a less theoretical basis than those of the Nusselt number form. Formulae of this type have been obtained from the application of simple statistical techniques to large datasets, taking into account several engine operational parameters and engine types. The resulting correlations provide reasonable estimates but perform poorly when extrapolated or applied to novel concepts. In this paper, the most important correlations are reviewed against the features of a modern diesel engine, and research requirements for future modelling developments are identified and discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3