Effects of water direct injection on the torque enhancement and fuel consumption reduction of a gasoline engine under high-load conditions

Author:

Kim Jaeheun1,Park Hyunwook1,Bae Choongsik1,Choi Myungsik2,Kwak Younghong2

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

2. Advanced Gasoline Engine Development Team, Hyundai Motor Company, Hwaseong-si, Republic of Korea

Abstract

Water was directly injected into the cylinder with an injection pressure of 5 MPa to investigate its effect on engine performance and emissions in a gasoline engine. The test engine was a 1.6-L naturally aspirated prototype engine consisted of water direct injection and port fuel injection systems. The engine featured a compression ratio of 13.5. Commercial gasoline direct injection injectors were used to inject the water. The water was injected at a fixed timing of −120 crank angle degrees after top dead center. The addition of water showed potential to mitigate the knock occurrence at part-load condition where the knock initially started to occur due to the high compression ratio. It allowed a further advance of spark timing; thus, the brake-specific fuel consumption was improved. The effects of water injection were further investigated under full-load condition within the engine speed range of 1500–3000 r/min. The water effectively reduced the in-cylinder temperature and the exhaust gas temperature; therefore, charge cooling through over-fueling (fuel enrichment) was eliminated with reduced brake-specific fuel consumption. Increase in the injected water mass resulted in further spark advance without the knock occurrence and provided room for further brake-specific fuel consumption reduction. An optimum water mass existed because too much water deteriorated the combustion efficiency, burn duration, and cycle efficiency. The positive effects of water injection were dulled with increased engine speed because the knocking resistance was already high intrinsically with the higher engine speed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3