Influence of water‐methanol injection and turbocharging on the performance of a hydrogen‐fueled spark ignition engine

Author:

Chitragar P. R.1,Shivaprasad K. V.2,Ichchangi Manjunath2,Ravi Rajesh3,Yadav M. S.1,Kumar G. N.4

Affiliation:

1. Department of Mechanical Engineering Vidya Pratishthan's College of Engineering Baramati Maharashtra India

2. Department of Engineering Beary's Institute of Technology Mangalore Karnataka India

3. School of Aerospace and Automotive Engineering, LERMA Laboratory International University of Rabat Rabat Morocco

4. Department of Mechanical Engineering National Institute of Technology Karnataka Surathkal Karnataka India

Abstract

AbstractThis article presents a study that compares the performance and emission characteristics of a four‐stroke, four‐cylinder spark ignition (SI) engine fueled by gasoline and neat hydrogen. The engine was equipped with turbocharging to optimize ignition timing for power boosting and vaporized water–methanol injection to reduce emissions. Engine tests were conducted at speeds ranging from 2000 to 6000 rpm, with a fixed intake pressure and varying quantities of hydrogen and spark advance timings. The study compared the results of non‐turbocharged and turbocharged engines with water–methanol injection in terms of combustion, performance, and emissions. The findings showed that the turbocharged water–methanol hydrogen operation had a higher brake thermal efficiency (BTE) than its counterpart, while the brake power of the hydrogen engine operation increased with turbocharging but slightly decreased with water–methanol injection. Additionally, volumetric efficiency improved by 7% for turbocharged and 4% for water‐injected hydrogen engine operation compared to the counterpart. The cylinder pressure for turbocharging with water–methanol operation yielded 16.32% higher compared with counterpart gasoline engine operation. Finally, nitrogen oxides (NOx) emissions were reduced with turbocharging and water–methanol injection compared to the counterpart non‐turbocharged hydrogen engine operation.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3